Applications of the Derivative

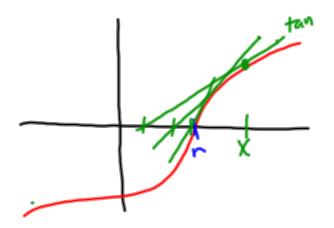
Extreme-Value Theorem (informal)

If a function is continuous on a <u>closed</u> interval, then it must have a max and min value on that <u>closed</u> interval.

S(t) is position of an object at time t

$$\alpha(t) = \Lambda'(t) = \frac{qt}{q\Lambda} = S''(t) = \frac{qts}{qs}$$

Newton's Method



$$V=1'y'y'\cdots$$

$$X^{N+1}=X^{N}-\frac{f_{i}(X^{N})}{f_{i}(X^{N})}$$

$$\frac{e \times 1}{f'(x) = 3 \times^{2} - 1}$$

$$\chi_{n = 1} \times \chi_{n} - \frac{\chi_{n}^{2} - \chi_{n} - 1}{3 \chi_{n}^{2} - 1}$$

$$\chi_{n = 1} \times \chi_{n} = 1.5 - \frac{(1.5)^{2} - (1.5)^{2} - 1}{3(1.5)^{2} - 1} = 1.34782$$

$$X_2 = 1.347$$
 $X_3 = 1.347 - \frac{(1.347) - (1.347) - 1}{3(1.347)^2 - 1} = 1.3252...$
 $X_4 = 1.3247...$

Mean Value Theorem (informal)

A continuous function on an open interval takes on all the values in the Range of the function. Specifically, the value that is the mean of the endpoint values.

HW

Pg 337 5,19,31 Pg 348 9 Pg 359 1,3,9,17