

Differentials (sounds impressive, but it is pretty simple and intuitive)

define:
$$dy = f'(x) dx$$

so that we get: $f'(x) = \frac{dy}{dx}$

Δy is NOT the same as dy

Examples 1,2 $y=x^2$ $\frac{dy}{dx} = 2x$ dy=2xdx@ x=3 dy=2(3)dx = Ldx $\int \int \frac{dy}{dx=1}$

-17 -2

= .65

local linear approximations (ex 3,4) $\begin{array}{l} y - f(x_{0}) = f'(x_{0}) (x - x_{0}) \\ t_{x_{0}} \longrightarrow y = f(x_{0}) + f'(x_{0}) (x - x_{0}) \end{array}$ Func -> F(x_0) ~ F(x_0) + F'(x_0)(x-x_0) $f_{tonc} \qquad f_{ton} \qquad f_{ton} \qquad f(x_0 + \Delta x) \approx F(x_0) + F'(x_0) \Delta x$

HW:

Pg 217 2,9,11,13,27,41